Program Highlights

Visualization of Quantum States

R. Skomski, X. C. Zeng, and A. Enders
Nebraska MRSEC

A. Solanki and A. Kashyap
LNM Institute of Information Technology, Jaipur, India

Quantum mechanical calculations of nanoscale objects such as molecules and clusters help greatly in advancing our current understanding of materials and properties. They require, however, the consideration of the atomistic basis of such structures and usually employ challenging computations of quantum wave functions. MRSEC researchers at the University of Nebraska-Lincoln and their colleagues at the LNM Institute of Information Technology, Jaipur, India have combined state-of-the-art computational approaches with experiments to visualize quantum states. They studied model systems such as tetraphenyl-porphyrin molecules designed to accommodate magnetic atoms. The high spatial precision of our scanning tunneling microscope (STM) was exploited to image selected molecular orbitals. By comparing theory with experiment the researchers were able to test important quantum-mechanical concepts and understand how macroscopic properties emerge from quantum mechanics [J. Chem. Phys. C 114, 9408 (2010)].

This research is supported by the National Science Foundation, Division of Materials Research, Materials Research Sciences and Engineering Program, Grant 0820521.

 

Visualization of Quantum States

Experimental STM images (left) of the lowest-unoccupied molecular orbital (LUMO) and the highest-occupied molecular orbital (HOMO) and theoretical calculation of the STM brightness (right).

Highlight Info

Date: March 2011
Research Area:
International Partnerships