A Definitive Account of the Spintronics Field

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grünberg’s Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. **Handbook of Spin Transport and Magnetism** provides a comprehensive, balanced account of the state of the art in the field known as spin electronics or spintronics. It reveals how key phenomena first discovered in one class of materials, such as spin injection in metals, have been revisited decades later in other materials systems, including silicon, organic semiconductors, carbon nanotubes, graphene, and carefully engineered nanostructures.

The first section of the book offers a historical and personal perspective of the field written by Nobel Prize laureate Albert Fert. The second section addresses physical phenomena, such as GMR, in hybrid structures of ferromagnetic and normal metals. The third section discusses recent developments in spin-dependent tunneling, including magnetic tunnel junctions with ferroelectric barriers. In the fourth section, the contributors look at how to control spin and magnetism in semiconductors. In the fifth section, they examine phenomena typically found in nanostructures made from metals, superconductors, molecular magnets, carbon nanotubes, quantum dots, and graphene. The final section covers novel spin-based applications, including advanced magnetic sensors, nonvolatile magnetoresistive random access memory, and semiconductor spin-lasers.

The techniques and materials of spintronics have rapidly evolved in recent years, leading to vast improvements in hard drive storage and magnetic sensing. With extensive cross-references between chapters, this seminal handbook provides a complete guide to spin transport and magnetism across a various classes of materials and structures.

FEATURES

- Offers a balanced and thorough treatment of the core principles, fundamental properties, theoretical models, experimental approaches, and state-of-the-art applications of spin transport and magnetism
- Includes a chapter by the co-recipient of the 2007 Nobel Prize in Physics
- Discusses diverse physical phenomena discovered in hybrid structures of ferromagnetic and normal metals
- Describes impressive breakthroughs in spin-dependent tunneling, including magnetic tunnel junctions with ferroelectric barriers
- Reviews the challenges and opportunities for controlling spin and magnetism in semiconductors
- Explores the phenomena characteristic of nanostructures made from a wide range of materials, including metals, superconductors, molecular magnets, carbon nanotubes, quantum dots, and graphene
- Addresses existing and potential spin-based applications

CONTENTS

Introduction

Historical Overview: From Electron Transport in Magnetic Materials to Spintronics, **Albert Fert**

Spin Transport and Magnetism in Magnetic Metallic Multilayers

Basics of Nano-Thin Film Magnetism, **Bretislav Heinrich**

Micromagnetism as a Prototype for Complexity, **Anthony S. Arrott**

Giant Magnetoresistance: Experiment, **Jack Bass**

Giant Magnetoresistance: Theory, **Evgeny Y. Tsymbal, D.G. Pettifor, and Sadamichi Maekawa**

Spin Injection, Accumulation, and Relaxation in Metals, **Mark Johnson**

Spin Torque Effects: Experiment, **Maxim Tsoi**
CONTENTS continued...

Spin Torque in Magnetic Systems: Theory, A. Manchon and Shufeng Zhang
Hot Carrier Spin Transport, Ron Jansen
Spin Transport and Magnetism in Magnetic Tunnel Junctions
Tunnel Magnetoresistance: Experiment (Non-MgO), Patrick R. LeClair and Jagadeesh S. Moodera
Tunnel Magnetoresistance in MgO-Based Magnetic Tunnel Junctions: Experiment, Shinji Yuasa
Tunneling Magnetoresistance and Spin Transfer with (Ga,Mn)As, H. Jaffrès and Jean Marie George
Spin Transport in Organic Semiconductors, Valentin Dediu, Luis E. Hueso, and Ilaria Bergenti
Spin Transport in Ferromagnet/III-V Semiconductor Heterostructures, Paul A. Crowell and Scott A. Crooker
Spin Polarization by Current, Sergey D. Ganichev, Maxim Trushin, and John Schliemann
Anomalous and Spin-Injection Hall Effects, Jairo Sinova, Joerg Wunderlich, and Tomas Jungwirth
Spin Transport and Magnetism at the Nanoscale
Spin-Polarized Scanning Tunneling Microscopy, Matthias Bode
Point Contact Andreev Reflection Spectroscopy, Boris E. Nagdorny
Ballistic Spin Transport, Bernard Doudin and N.T. Kemp
Graphene Spintronics, Csaba Józsa and Bart J. van Wees
Magnetism and Transport in Diluted Magnetic Semiconductor Quantum Dots, Joaquín Fernández Rossier and R. Aguado
Spin Transport in Hybrid Nanostructures, Saburo Takahashi and Sadamichi Maekawa
Non-Local Spin Valves in Metallic Nano-Structures, Yoshichika Otani and Takashi Kimura
Molecular Spintronics, Stefano Sanvito
Applications
Magnetoresistive Sensors Based on Magnetic Tunneling Junctions, Gang Xiao
Magnetoresistive Random Access Memory (MRAM), Johan Åkerman
Emerging Spintronic Memories, Stuart Parkin, Masamitsu Hayashi, Luc Thomas, Xin Jiang, Rai Moriya, and William Gallagher
GMR Spin-Valve Biosensors, Drew A. Hall, Richard S. Gaster, and Shan X. Wang
Semiconductor Spin-Lasers, Rafal Oszwaldowski, Christian Gothgen, Jeongsu Lee, and Igor Žutić
Spin Logic Devices, Hanan Dery

Handbook of Spin Transport and Magnetism

Spin Transport and Magnetism in Semiconductors
Spin Relaxation and Spin Dynamics in Semiconductors, Jaroslav Fabian and M.W. Wu
Electrical Spin Injection and Transport in Semiconductors, Berend T. Jonker
Spin-Polarized Ballistic Hot Electron Injection and Detection in Hybrid Metal-Semiconductor Devices, Ian Appelbaum

Magnetic Semiconductors: III-V Semiconductors, Carsten Timm
Magnetism of Dilute Oxides, J.M.D. Coey
Tunneling Magnetoresistance and Spin Transport with (Ga,Mn)As, H. Jaffrès and Jean Marie George
Spin Transport in Organic Semiconductors, Valentin Dediu, Luis E. Hueso, and Ilaria Bergenti
Spin Transport in Ferromagnet/III-V Semiconductor Heterostructures, Paul A. Crowell and Scott A. Crooker
Spin Polarization by Current, Sergey D. Ganichev, Maxim Trushin, and John Schliemann
Anomalous and Spin-Injection Hall Effects, Jairo Sinova, Joerg Wunderlich, and Tomas Jungwirth
Spin Transport and Magnetism at the Nanoscale
Spin-Polarized Scanning Tunneling Microscopy, Matthias Bode
Point Contact Andreev Reflection Spectroscopy, Boris E. Nagdorny
Ballistic Spin Transport, Bernard Doudin and N.T. Kemp
Graphene Spintronics, Csaba Józsa and Bart J. van Wees
Magnetism and Transport in Diluted Magnetic Semiconductor Quantum Dots, Joaquín Fernández Rossier and R. Aguado

Receive Free Standard Shipping when you order online at www.crcpress.com

ORDERING LOCATIONS

In the Americas:
CRC PRESS
PO Box 409267
Atlanta, GA 30384-9267
Tel: 1-800-634-7064
Fax: 1-800-248-4724
From Outside the Continental U.S.
Tel: 1-561-994-0555
Fax: 1-561-361-6018

e-mail: orders@taylorandfrancis.com

Rest of the World:
CRC PRESS / BOOKPOINT
130 Milton Park,
Abingdon, Oxon, OX14 4SB, UK
Tel.: +44 (0) 1235 400 524
Fax: +44 (0) 1235 400 525

UK:
e-mail: uk.trade@tandf.co.uk

Europe:
e-mail: international@tandf.co.uk

CORPORATE OFFICES

CRC PRESS
6000 Broken Sound Parkway, NW, Suite 300
Boca Raton, FL 33487, USA
Tel: 1-800-272-7737
Fax: 1-800-374-3401
From Outside the Continental U.S.
Tel: 1-561-994-0555
Fax: 1-561-361-6018

e-mail: orders@taylorandfrancis.com

CRC PRESS UK
Albert House, 4th floor
1 - 4 Singer Street
London EC2A 4BQ
UK
Tel: 44 (0) 20 7017 6000
Fax: 44 (0) 20 7017 6474

e-mail: enquiries@crcpress.com

Catalog no. K10210
July 2011, c. 800 pp.
ISBN: 978-1-4398-0377-6
$149.95 / £95.00
Your discounted price: $119.96 / £76.00

Enter code 066MM when ordering at www.crcpress.com to save 20%. Hurry! Offer available for a limited time.